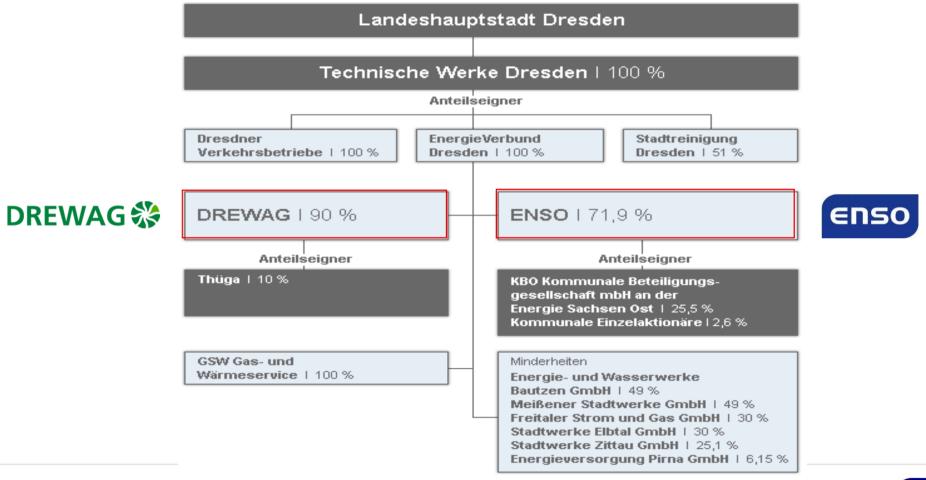
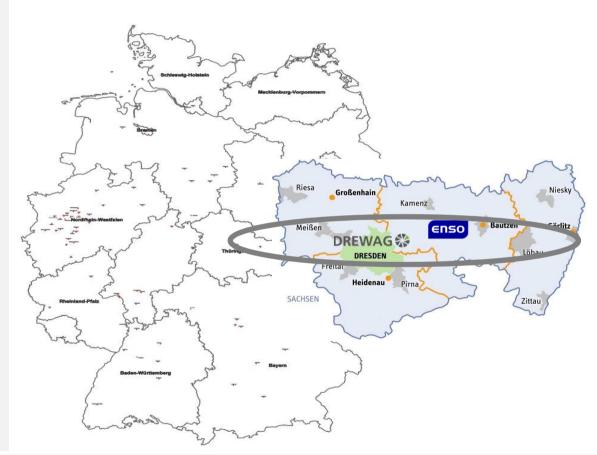
Projekt Zukunftshaus von WG Johannstadt / DREWAG

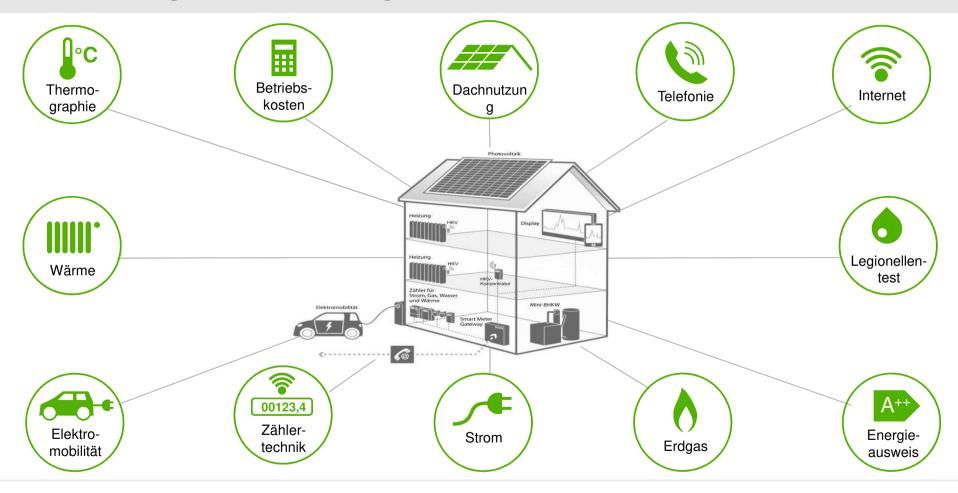

Energiedialog des Lokale Agenda 21 für Dresden e.V.

Dresden, 19.03.2019

Wer sind wir?



DREWAG und ENSO sind Energiedienstleister in Dresden und Ostsachsen


- Von Dresden und Ostsachsen aus versorgen wir mit Strom, Gas, Wärme und Energiedienstleistungen.
- Nachhaltige und effiziente Energieversorgung ist Anliegen unseres Engagements.
- Wir investieren in den Ausbau unserer Netze, der Energieerzeugung aus Erneuerbaren Energien und Kraft-Wärme-Kopplung sowie der Breitbandversorgung in der Region.
- Kostenfreies Kundentelefon und Onlineservice sichern jederzeit erreichbaren Kundenservice.

Unsere Energiedienstleistungen rund um die Immobilie

Projekt "Zukunftshaus WG Johannstadt / DREWAG" im Rahmen des EU-Projektes MAtch UP

Ein herzliches Dankeschön an die WG Johannstadt für die partnerschaftliche Zusammenarbeit!

Dresden ist European Lighthouuse City

Fraunhofer

STESAD -

VONOVIA

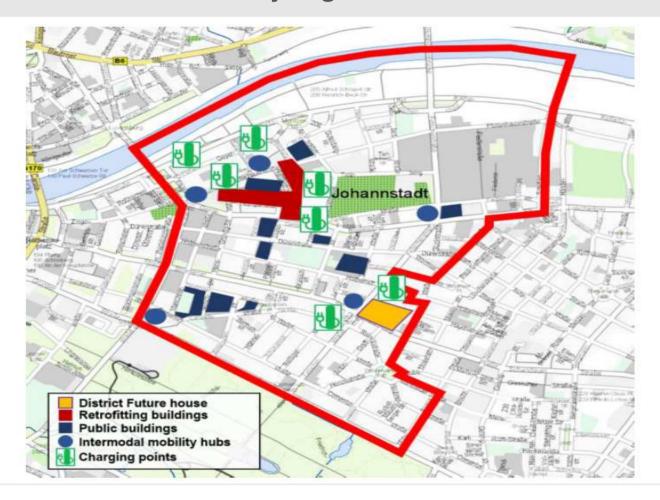
Partner

DREWAG 💸

Laufzeit 10/2017 .. 10/2022

Budget 17,5 MioEUR EU-Gesamtkonsortium

4,5 MioEUR Dresden


1,1 MioEUR DREWAG/ENSO inkl. Netze - Förderquote 70 %

Das Projektgebiet Johannstadt

"Smart Tenant" mit vonvia

Blasewitzer Str. 36 a-c

"Future House" mit WGJ

Haydnstr. 17

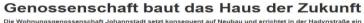
Zukunftshaus – Haydenstraße 17

- Bauzeitraum: Sommer 2017 Herbst 2018
- fünfgeschossiges KfW55-Effizienzhaus mit insgesamt 14 Wohneinheiten und einer Tiefgarage
- Projektvereinbarung zwischen DREWAG und WGJ zur technischen Ausrüstung des Gebäudes zum Zukunftshaus
- Projektlaufzeit bis 2023 zum Test der Technologien

EU Projekt – MAtch UP

- MAtchUP ist ein von der EU finanziertes Smart City-Projekt
- Im Rahmen des Projekts sollen intelligente Lösungen geschaffen werden, um die Lebensqualität zu verbessern und die lokale Wirtschaft zu stärken.
- Hauptziele sind die Verbesserung der Energieeffizienz, Steigerung der nachhaltigen Mobilität und Investitionen in Technologien, die als Modell für den städtischen Wandel für andere Städte in Europa und darüber hinaus dienen.
- 3 LIGHTHOUSE CITIES übernehmen die Projektleitung und die Umsetzung innovativer und technologischer Lösungen.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 774477



Das Zukunftshaus der WG Johannstadt

Sie können sich ab Januar 2018 bei uns für eine Wohnung bewerben.

Mehrfamilienhaus mit 14 Wohneinheiten. Das Besondere: Das Gebäude erhält ein innovatives Energiekonzept, das die Genossenschaft mit den Dresdner Stadtwerken erarbeitet hat.

AUSSTATTUNG BÄDER

Dresden, Baustart an der Haydnstraße 17 in Striesen West; Die Trägerbohlenwand für eine Baugrube wird errichtet. Bis zum Sommer 2018

Folgen: 🔣 💆 🔯

... mit dem Partner DREWAG

Projektvereinbarung Zukunftshaus

zwischen

Wohnungsgenossenschaft Johannstadt eG Haydnstraße 1 01307 Dresden

- nachstehend WGJ genannt -

und

DREWAG –Stadtwerke Dresden GmbH Friedrich-List-Platz 2 01069 Dresden

- nachstehend DREWAG genannt -

- nachstehend gemeinsam als Projektpartner bezeichnet -

Stand: 12.04.2017 (Planungsstand: Entwurfsplanung nach HOAl LP 3)

7 Bestandteile der Vereinbarung

Die in der vorliegenden Vereinbarung erwähnten Anlagen sind Vertragsbestandteile. Ferner sind die Planungsunterlagen der GESA für die zusätzliche Gebäudeausrüstung mitgeltende Unterlagen.

Anlage 1 - Projektmatrix

Anlage 2 - Technische Beschreibung

Anlage 3 – Dachnutzungsvertrag Anlage 4 – Mieterstrommodell

Anlage 5 - Muster Gestattungsvertrag

Anlage 6 - Optional Betriebskostenabrechnung (Abhängig von Entscheidung bis 15.09.2017)

Anlage 7 - Optional Ladeinfrastruktur Elektromobilität (Abhängig von Entscheidung bis

15.09.2017)

Denden 02.05.2017 (Ort. Datum)

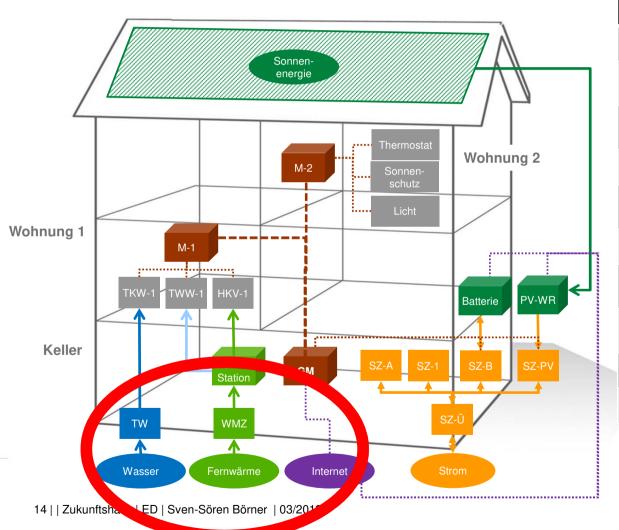
Um Um

Wohnungsgenossenschaft Johannstadt eG

Diesden, 27.04.2017 (Ort, Datum)

DREWAG - Stadtwerke Dresden GmbH

Projekt "Zukunftshaus WG Johannstadt / DREWAG" Projektphase 1 (2017/18)


Unsere Leistungen am "Zukunftshaus"

Bestandteile des Zukunftshauses

Symbol	Bezeichnung	Symbol	Bezeichnung
\rightarrow	Solarstrom	→	Trinkwasser
PV- WR	Photovoltaik Wechselrichter	TW	Trinkwasser Hauptzähler
SZ-PV	Stromzähler Photovoltaik	TKW-1	Trinkkalt- wasserzähler
\rightarrow	Strom	→	Trinkwarm-wasser
SZ-Ü	Stromzähler Übergabe	TWW-1	Trinkwarm- wasserzähler
SZ-1	Stromzähler Wohnung	\rightarrow	Fernwärme
SZ-A	Stromzähler Allgemein	WMZ	Wärme- mengenzähler
SZ-B/PV	Stromzähler Batterie & PV	HKV-1	Heizkosten-verteiler
GM	Gebäude-manager	M-1	Wohnungs-manager
	Datenverbindung		Internet-verbindung

Ist das der Trend zur Energiewende im Wärmemarkt...?

Karikatur: Gerhard Mester

...oder was ist eigentlich "dezentral"...?

...und welche Möglichkeiten "vor Ort" gibt es noch?

Dresden wird in den nächsten 15 Jahren kräftig wachsen

Für die meisten Regionen in Sachsen sagen die Statistiker dagegen erneut einen drastischen Rückgang der Bevölkerungszahl voraus.

Von Cunnar Saft SAFT.GUNNAR@DD-V.DE

Von Gunnar Saft

Saft Gunnar Saft

Mart den Berechmungen der Statt

Kontre de Birmochmerzah in den

Bed Birmochmerzah in den

Mart Gunnar Bed Birmochmerzah in den

Sachiste Jeben, Könnten es den

Bach Birmochmerzah in den Stadt

Chemnitz In den Kommunnen gelt

Bir Saft Gunnar den Stadt

Chemnitz In den Kommunnen gelt

Bir Bed Birmochmerzah in den Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Stadt

Chemnitz In den Kommunnen gelt

Bir Birmochmerzah in der Birmochmerzah in

Bevölkerungsprognose

resden	∴2	009	2025	
resden	517	100	554000	
gisqla	5.18	900:	538 600	
			221100	
(rels Bautzen :				
(reis Görlitz				
(reis Melfsen	254	5.DO-	223 900	
achsische Schw				
	253	80a	232 200	
zgebirgskreis				
ittelsachsen	3.32	200	277 500	
og tlandkreis	247	200	205 000	
reis Zwickau	345	300	288 500	
reis Leipzig	269	700.	241 800	
loresachsen	2CB	700	182 000	
Ono le Stat	sterio	a Lamba	mandiso trees	

Owie Seinneitzerent Jeben

Cleichzeitig wird sich auch das

Durchschnittsnärer der sächsischen

Bevölkerung spürbar erhöhen.

Weiteren genannet noch et 45,6

wirderen genannet noch et 45,6

ein Weit von knapp über 50 Jahren

erreicht sein.

Allerdings soll es auch hier deuffiche regionale Unterschiede geben.

So ward für die Kreise Görlüs und

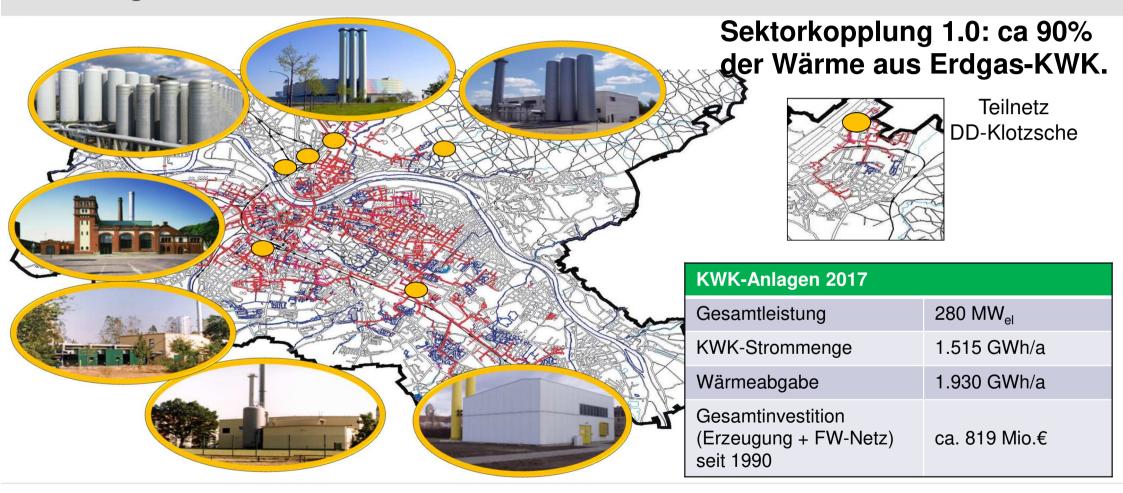
Vogllauf ein Spützenwert von 52,6

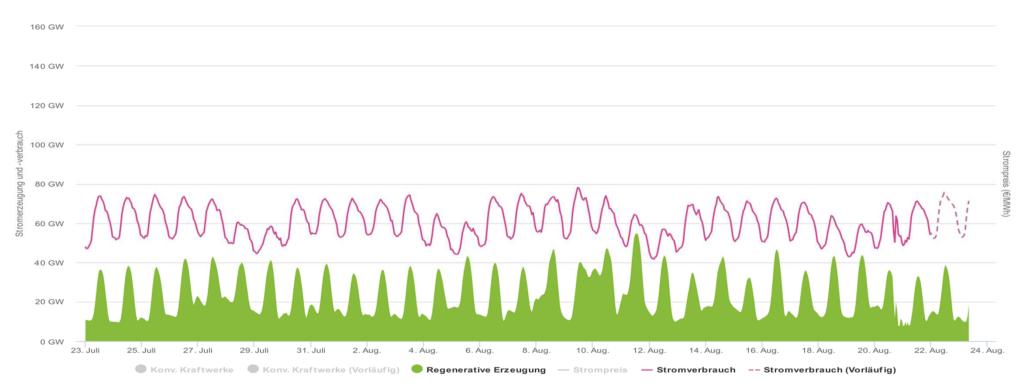
vogllauf ein Spützenwert von 52,6

te Dreeden und Leipzig durch den

starken Zusig von Jüngeren Menschen mit 43,6 bzw. 46,6 Jahren auf

das landeweit geringste Durchschnittsalter hoffen können.


Energiewende = Strom UND Wärmeseite


Energie- und Wärmewende

RegEn = neuer Taktgeber im Strommarkt

Agora Energiewende; Stand: 23.08.2018, 10:30

2015: Projekt Batteriespeicher Reick

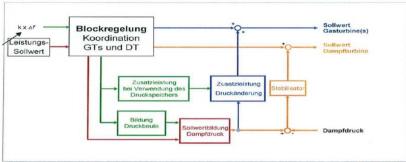
Allgemein:

- Projektablauf:
 - 10/2013 (Start Projektentwicklung)
 - 04/2014 (Investitionsentscheidung)
 - **02/2015 (Abnahme)**
 - 05/2015 (erfolgreiche Präqualifikation)
- Projektkosten:

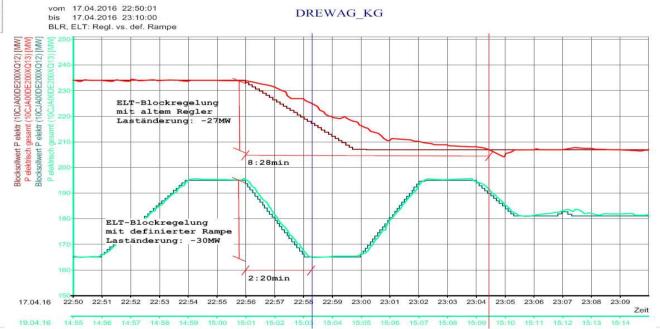
in Summe 2.700.000 € (760.000 € Fördermittel)

Anlagenbetrieb:

- ganzjährig im Primärregelleistungsmarkt
- Präqualifikation aktuell für 2 MW Primärregelleistung
- Vermarktung im Regelleistungspool der Vattenfall
- Bilanzkreis- und Lademanagement durch DREWAG



einer Auslegung für die Vermarktung von 2 MW Primärregelleistung auf Lithium-Ionen-Basis" wurde aus Mitteln der EU gemäß der Richtlinie Energie und Klimaschutz – RL EuK/2007 als Modell- und



2016: Leittechnikmodernisierung HKW NB

Strukturbild SPPA-P3000 Modellbasierte Frequenzregelung mit Dampfturbine

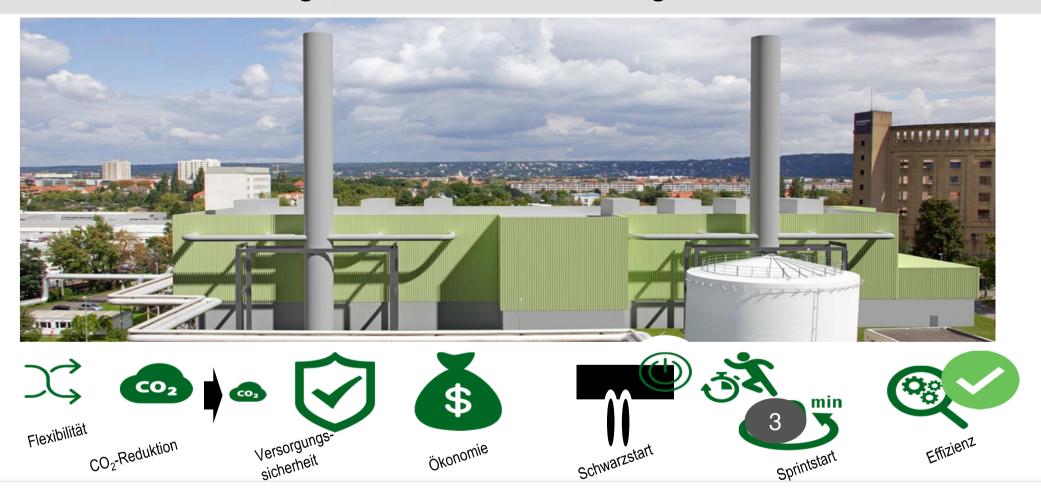
2017/18: Wärmespeicheranlage im Innovationskraftwerk Reick

2018: 40-MW-Elektrodenheizkessel – GT-HKW Nossener Brücke

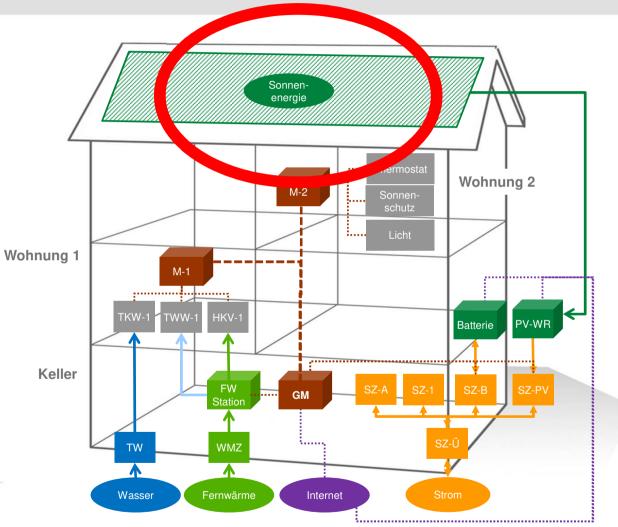
0167_2017_12_04_Franzis_FACTS_10_FINAL_v002.mp4

Nutzung von regenerativem Überschussstrom zur Fernwärmeerzeugung

Vermarktung im Regelenergiemarkt und zur Netzstabilisierung




2021: KWK-Flex-Anlage; 80 MW für alle Marktsegmente


Wie geht es weiter?

Bestandteile des Zukunftshauses

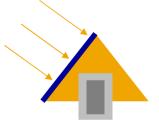
Symbol	Bezeichnung	Symbol	Bezeichnung
\rightarrow	Solarstrom	\rightarrow	Trinkwasser
PV- WR	Photovoltaik Wechselrichter	TW	Trinkwasser Hauptzähler
SZ-PV	Stromzähler Photovoltaik	TKW-1	Trinkkalt- wasserzähler
\rightarrow	Strom	→	Trinkwarm- wasser
SZ-Ü	Stromzähler Übergabe	TWW-1	Trinkwarm- wasserzähler
SZ-1	Stromzähler Wohnung	→	Fernwärme
SZ-A	Stromzähler Allgemein	WMZ	Wärme- mengenzähler
SZ-B/PV	Stromzähler Batterie & PV	HKV-1	Heizkosten- verteiler
GM	Gebäude- manager	M-1	Wohnungs- manager
	Datenverbindung		Internet- verbindung

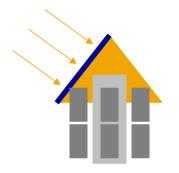
27 | Zukunftshaus | ED | Sven-Sören Börner | 03/2019

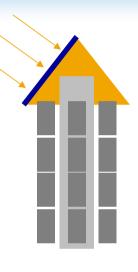
Photoviltaikanlage – Energieerzeugung vor Ort

- Nennleistung PV-Anlage 9,92 kWp
 - Hochleistungsmodule von LG mit 320 Wp
 - Erzeugt 9.200 kWh p.a.
- Speichersystem von Varta
 - Nutzbare Kapazität 3,3 kWh
- Eigenverbrauchsquote bis 80%
- Autarkiegrad bis 40%

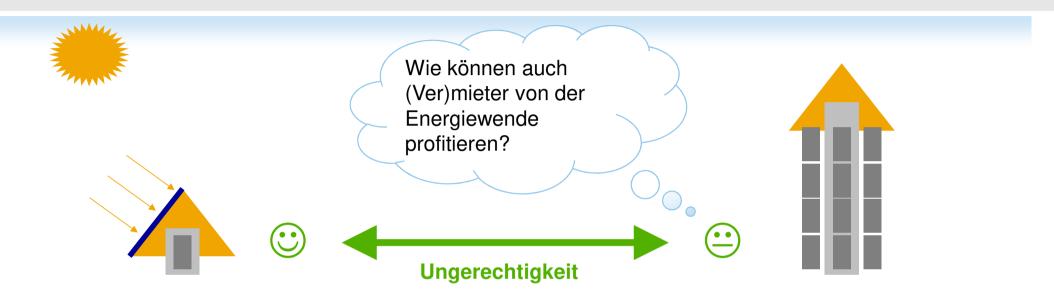
- Ziel: Umsetzung des Mieterstrommodells: "Mein Mieterstrom"
- □ Preisvorteil: 0,5 ct/kWh unter dem Stromprodukt Dresdner Strom privat




Mieterstrom und Immobilienwirtschaft


Privat

PV-Fläche wächst nicht 1:1 zur Anzahl der Wohneinheiten (WE)

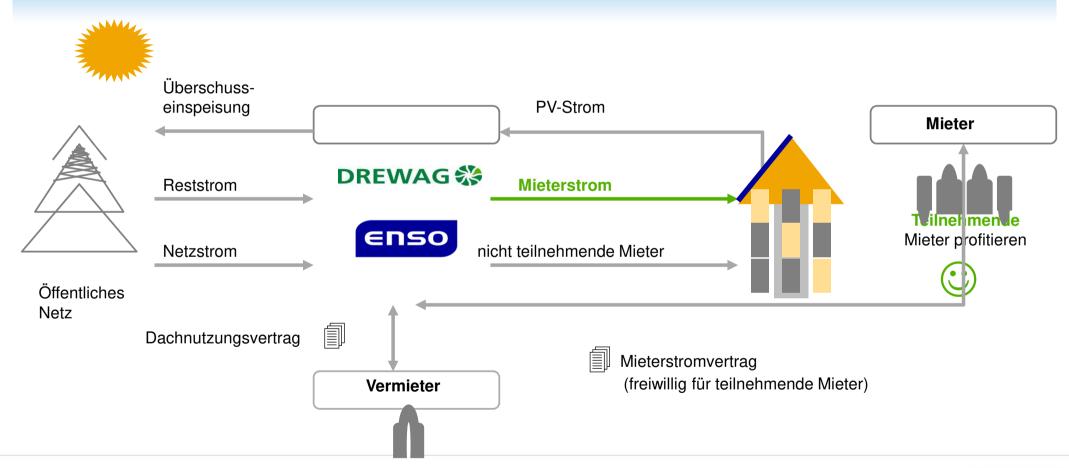


Einfamilienhaus (1 WE)	Kleines Mehrfamilienhaus (< 10 WE)	Großes Mehrfamilienhaus (> 10 WE)	
30 % Eigenverbrauch (60 % mit Speicher)	30-95 % Eigenverbrauch	95 % Eigenverbrauch	
70 % Stromeinspeisung	5-70 % Stromeinspeisung	5 % Stromeinspeisung	
30 % Energieautarkie (60 % mit Speicher)	15-30 % Energieautarkie	15 % Energieautarkie	

Mieterstrom und Immobilienwirtschaft

Energiewende im Einfamilienhaus		Energiewende im Mehrfamilienhaus	
Ökologische Vorteile	\odot	Ökologische Vorteile 🙁	
Finanzielle Vorteile	\odot	Finanzielle Vorteile 😁	

Mieterstrom und Immobilienwirtschaft



Energiewende im Einfamilienhaus		Energiewende im Mehrfamilienhaus		
Ökologische Vorteile	\odot		Ökologische Vorteile (
Finanzielle Vorteile	\odot		Finanzielle Vorteile (\odot

"Mein Mieterstrom"

Smart building – Energiemanagementsystem (1)

Gebäudemanager – Zentral im Keller

Datenaggregation, Datenverteilung und Steuerung

- Zentrale Erfassung der Energieverbräuche (Wasser, Wärme, Strom, PV und Batterie)
- Erfassung Wetterdaten und Außentemperaturen über Wetterstation
- Verteilung der Daten an einzelne Wohnungsmanager
- Steuerung und Optimierung der Wärmebereitstellung (Auf Grund Anforderungen der Wohnungsmanager)

Fernwärmestation

Wetterstation

Elektrozähler

SmartMeter Gateway

Wärmemengen-

Wasserzähler

PV-Anlage

Smart building – Energiemanagementsystem (2)

Wohnungsmanager – In jeder einzelnen Wohnung

Visualisierung

- Energieverbrauch (Wasser, Warmwasser, Heizung, Strom) mit hist. Vergleichswerten
- Solarstromerzeugung
- Raumtemperaturen
- Wetter und Außentemperaturen
- Informationen Vermieter
- offene Fenster
- Visualisierung auf App möglich

Fußbodenheizungsregler

Rauchwarnmelder

Temperaturfühler Schalterprogramm

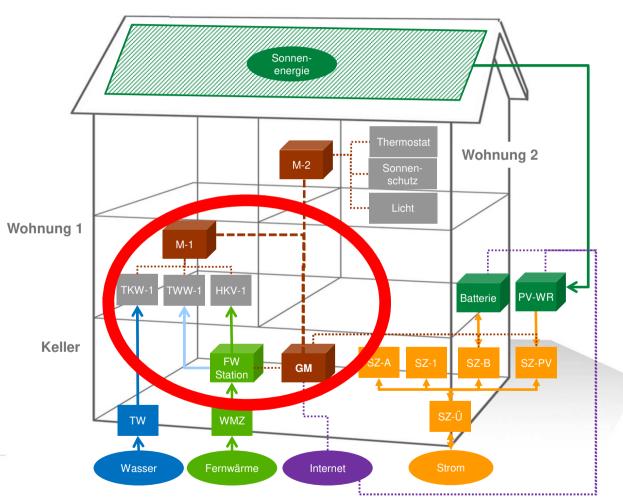
Wärmemengenzähler

Steuerung

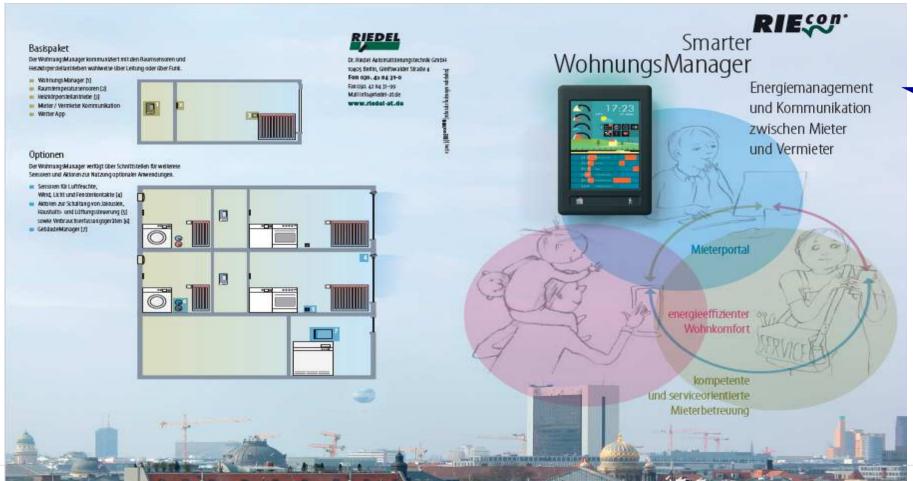
- Temperaturen und individuelle Heizkurven für jeden Raum
- Sonnenschutz (Jalousien)
- Licht (Zentraler Ausschalter beim Verlassen der Wohnung)
- Steuerung auch per App möglich.

Schaltmodul Licht Rollladen

Wasserzähler kalt

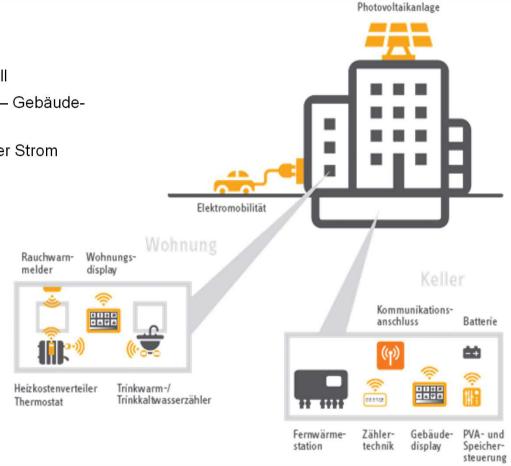


Bestandteile des Zukunftshauses



Symbol	Bezeichnung	Symbol	Bezeichnung
\rightarrow	Solarstrom	→	Trinkwasser
PV- WR	Photovoltaik Wechselrichter	TW	Trinkwasser Hauptzähler
SZ-PV	Stromzähler Photovoltaik	TKW-1	Trinkkalt- wasserzähler
\rightarrow	Strom	\rightarrow	Trinkwarm- wasser
SZ-Ü	Stromzähler Übergabe	TWW-1	Trinkwarm- wasserzähler
SZ-1	Stromzähler Wohnung	\rightarrow	Fernwärme
SZ-A	Stromzähler Allgemein	WMZ	Wärme- mengenzähler
SZ-B/PV	Stromzähler Batterie & PV	HKV-1	Heizkosten- verteiler
GM	Gebäude- manager	M-1	Wohnungs- manager
	Datenverbindung		Internet- verbindung

Smart Home Lösung für MFH = "Smart building System"


Projekt "Zukunftshaus WG Johannstadt / DREWAG" Projektphase 2 (2019 ff)

Projektziele der Phase 2 (Stand 2017)

- <u>Technisches</u> und <u>Kommunikatives</u> Zusammenwirken von:
 - Eigenstromerzeugung (*Speicher) im Mieterstrommodell
 - Smart Home Immobilienwirtschaft (System "RIECON") Gebäude-/Wohnungsdisplays
 - Gateway; intelligente Zähler; BK-Abrechnung (DL-Zähler Strom (Allgemeinstrom))
 - Konventionelle Wärmeversorgung (Fernwärme)
- Visualisierung Verbräuche für den Mieter
- Neue Tarife ("lastvariable Tarife")
- Zusätzlich: Baustein im EU Projekt Beteiligung DREWAG) "smart cities"

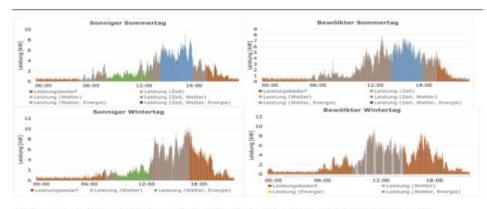
... und deren aktuelle Fortschreibung.

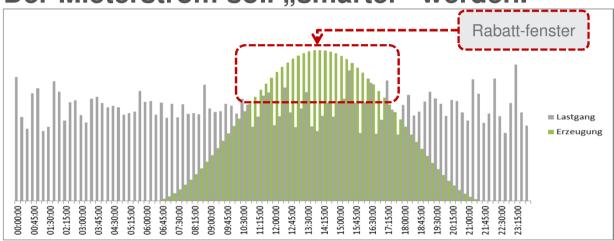
	Funktion/Dienstleistung		
Technologie		Erprobungsphase, Testumfang	
	Kurzbeschreibung		
1 Dezentrale Stromerzeugung und	l-lieferung		
Photovoltaikanlage	Mieterstrommodell	Energiedaten PVA und Speicher (EVQ, AQ	
Solarstromspeichersystem	Micterstrommodeli		
Solarenergiemanagement-	Schaltzentrale Batterieladung- und entladung. Datenbereitstellung (Erzeugung, Lieferung,	MFH), Akzeptanz Mieterstrom-modell	
system	Einspeisung, Eigenverbrauch, Autarkie)		
2 Energiemanagement			
2.1 Energiemanagementsystem			
Gebäudemanager	Zentrale Kommunikationsschnittstelle, Erfassung und Archivierung von Verbrauchsdaten aus angeschlossenen Wohnungsmanagern, Ermittlung optimaler Führungsgrößen für Wärmeerzeuger und Lüftungszentrale.	Funktionstests, Nutzerbefragung, Datenerfassung aus dem System, Lastvariabler Stromtarif	
Wohnungsmanager	Plattform für Prozesse in der Wohnung, wie Heizungs- und Lüftungsregelung, Verbrauchserfassung für Wärme, Wasser und Strom. Terminal für Bedienung, Anzeige und Kommunikation mit dem Wohnungsverwalter oder Servicedienstleistern.		
2.2 Messsystem NETZ			
Smart Meter Gateway	Erfassung aller Medien in einem Messsystem Leerrohr für künftige Datenübertragungsinfrastruktur	Zusammenspiel verschiedener Systeme	
Submetering HKV, WMZ, TW	Bereitstellung Daten und Durchführung Betriebskostenabrechnung	und Aufbau eines sicheren Datentransfer	
3 Sonstiges			
Kommunikationsanschluss NETZ	Datentransfer	Zusammenspiel verschiedener Systeme	
	Triple Play (Fernsehen, Internet, Telefonie)	und Aufbau eines sicheren Datentransfer	

Projektziele 2

Zusammengeführt werden soll Theorie (Simulation) und gemessenes Verhalten in der Praxis.

Abbildung 2: SLP; Auflösung: 15-minütlich Tageslastgang Messungen; Auflösung einminütig




Abbildung 7: Leistungsbedarf nach Kategorien für vier Beispieltage (mit Gebäudetechnik)

Projektziele 2

Der Mieterstrom soll "smarter" werden.

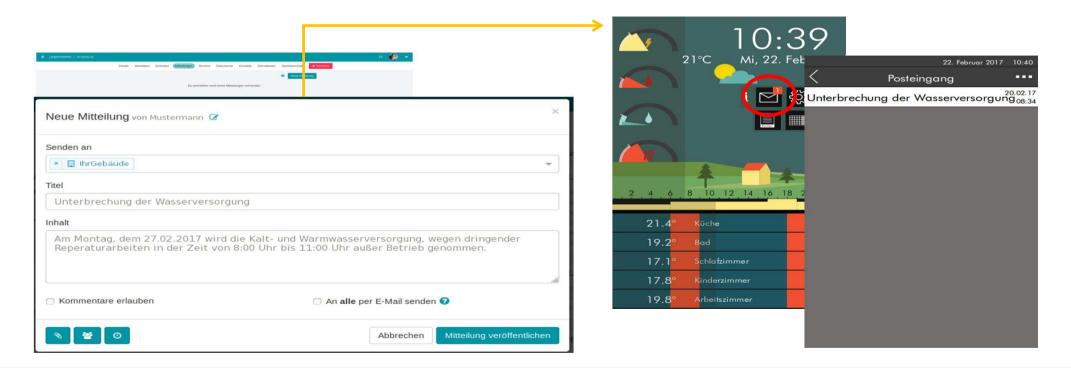
Stufe	Lastvariabler Stromtarif abhängig von:	Rahmenzeit für Rabatt	Rabatt
1	Fester Zeitraum	Jeweils vom 01.04. bis 30.09. zwischen 14:00 und 18:00 Uhr	2 ct/kWh brutto.1
2	Zeit und Wetter	Abhängig von örtlich erfassten Wetterdaten	mind. 2 ct/kWh brutto. ¹
3	Zeit, Wetter- und Energiedaten	Abhängig von aktuellen Energiedaten der Photovoltaikanlage und Wetterprognosedaten	mind. 2 ct/kWh brutto. ¹

- Die Solarstromerzeugung ist abhängig von der jeweiligen Sonnenstrahlung und passt zeitlich nicht immer zum aktuellen Stromverbrauch. Daraus resultieren Überschusseinspeisungen ins öffentliche Stromnetz.
- Durch den Einsatz eines Speichersystems können wir diese schon zum Teil minimieren. Wir wollen aber noch einen Schritt weitergehen und die Stromnetze zusätzlich entlasten.
- Wir rabattieren den Strompreis in Phasen der Überschusseinspeisung (Lastvariabler Stromtarif), dadurch wir der Mieter animiert den Stromverbrauch in preisgünstige Zeiten zu legen und die Einspeisung ins Stromnetz weiter zu reduzieren.
- Dazu informieren wir die Mieter über das **Display** Ihres Wohnungsmanagers. Die Preisgestaltung der Zukunft stellen wir uns in drei Stufen vor:

Mieterstrommodell

Derzeit bereits umgesetzt

Seite 42 |



| | Zukunftshaus | ED | Sven-Sören Börner | 03/2019

Mieterstrommodell

... auch WGJ kann/will mit dem Mieter kommunizieren.

Über das Portal können Mitteilungen in eine Wohnung übertragen werden.

Match UP-Projekte in Dresden

MAtchUP hilft, eigene "Muster"projekte gemeinsam mit Partnern gefördert zu entwickeln

Smart Tenant, Future House

 PVA + Speicher + Mieterstrom + Steuerung

Säule 1: Energy

• IMSys/ Submetering-Dienste

Fernwärme

- Messungen Wärmespeicher Reick
- Einbindung EE in FW

Säule 2: ICT

SM/SMGW, Netzplattform

- Architektur Serviceplattform Netz
 → Dienste für Dritte
- Anbindung zur Urban Platform der LHD

Säule 3: Mobility

Ladepunkte, Mobi-Konzepte

- · Entwicklung Ladestandorte
- Mobilitätsverhalten & -konzept WoWi für 5 E-Golfs
- Mobipunkt Fetscherplatz inkl. netzdienlichem Speicher

Und was bringt uns MAtchUP für die Zukunft?

... aber wenn es nicht in Dresden gelingt, wo dann?

Dresden wird in den nächsten 15 Jahren kräftig wachsen

Für die meisten Regionen in Sachsen sagen die Statistiker dagegen erneut einen drastischen Rückgang der Bevölkerungszahl voraus.

Von Gunnar Saft SAFT, GLINNARGEDD V.CE

Dresden. Die Metropoler. Dresden und Leipzig sind die Gewinner der jüngsten Bevölkerungsprognose für den Freistaat Sachsen.

nur den Freistraat Sachsen.
Laut den Berechnungen des Statistischen Landessimites in Kamenzkönnte die Einwohnerzahl in den beiden Städten bis 2025 (eweiße um bis zu sieben bzw. um bis zu vier Prozent zunehmen. Der wichtigste Canal Anfahrenden seren Zamensen. Grund dafür sind erwartete Zuwan-derungsgewinne aus dem Bundes-gebiet und aus dem Ausland.

in und uns dem Ausland.
In und uns dem Ausland.
In den gesannten Freistaat einer weiteren Bevölkerungsrückgang voraus, der mindestens bis zum Jahr 2060 anhält. Wahrend heute mapp 4,2 Millionen Menschen in achsen leben, könnten es dem ach im Jahr 2025 nur noch zwichen 3,6 und 3,8 Millionen sein, etroffen von dem Minustrend sind lie zehn Lundkreite und die Stadt hemritz. In den Kommunen geht is Bevölkerungszahl his zu 20 Proent zurück. Neben Wanderungssplasten ist dafür des anhaltende eburtendefizit verantwortlich.

Bevölkerungsprognose

trade In lett 1	2009	2025
Dresden	517100	554000
Leipzig	518 900.	538 600
Chemnitz	243100	221 100
Krels Bautzen	325,000	273 500
Kreis Görlitz	281 100	232 100
Kreis Meißen		223 000
Săchsisthe Schw	eiz-Ostera	zgeblige
	253 800	232200
Erzgebirgskreis	372,400.	307 700
Mittelsachsen	332 200	277 500
Vogtlandkreis	247,20C	205 000
Krels Zwickau	345 10C	288 500
Kreis Leibzig	269 700	241 800
Nordsachsen	208 700	182 000
Country of the		

Gleichzeitig wird sich auch das Durchschnittsalter der sächsischen Bevölkerung spürbar erhöhen. Während es zurzeit noch bei 45.9 Jahren liegt, könnte 2025 bereits ein Wert von knapp über 50 Jahren erreicht sein.

erreichtsein. Allerdings soll es auch hier deutli-che regionale Unterschiede geben. So wird für die Kreise Görlitz und So wird für die Areise Gothat ind Vogtland ein Spitzenwert von 52.9 Jahren erwartet, während die Städ-te Dresden und Leipzig durch den starken Zuzug von Jüngeren Men-schen mit 45,6 bzw. 46,6 Jahren auf das landeswert geringste Durch-schnittsaller hoffen beinnen.

Die gesamte Progrose gibt es at.1 www.sz-online.de/prognose

Vielen Dank

für Ihr Interesse

Dipl.-Ing. Swen-Sören Börner

Abteilungsleiter Vertrieb Energienahe Dienstleistungen

Telefon: 0351 / 860 4253

Swen-Soeren_Boerner@drewag.de

Vielen Dank für Ihre Aufmerksamkeit.

